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Abstract-The present study investigates the influence of variable viscosity of temperature-dependent fluids 
on the laminar heat transfer and friction factor in a 2:l rectangular duct. The H, thermal boundary 
condition corresponding to axially constant heat flux and peripherally constant temperature was adopted 
for a top-wall-heated configuration. The governing conservation equations of mass, momentum, and 
energy were solved using a finite volume method, and the range of the Prandtl number was from 7 to 
I5 000. The present numerical results of local Nusselt numbers for oil showed 7&80% enhancement over 
those of a constant property fluid and 4&50X enhancement over water. and gave excellent agreement 
with recent experimental results [Int. J. Heat Mu.w Tran.$r 35, 641-648 (1992)]. The heat transfer 
enhancement from the heated top wall was due to an increased velocity gradient near the wall. The study 
proposes a new correlation for local Nusselt numbers in the 2:l rectangular duct, which covers both 
thermally developing and thermally fully developed regions. Consequently, a temperature-dependent 
viscous fluid with a non-circular duct is proposed for use in the design of a liquid cooling module for the 

computer industry and in compact heat exchangers in general. 

1. INTRODUCTION 

A STRONG interest in the flow of temperature-depen- 

dent viscous fluids in rectangular ducts is based on 
the potential heat transfer enhancement associated 
with the temperature-dependent viscosity, as demon- 
strated by a recent report by Xie and Hartnett [I]. 
This interest stems from the practical use of these fluids 
in heat exchangers and in the cooling of electronics. 
For most fluids, the physical properties of specific 
heat, thermal conductivity, and density are relatively 
independent of temperature, but the viscosity 
decreases very markedly with temperature. For ex- 
ample, the viscosity of glycerin decreases from 1.85 

Pa s at 290 K to 0.21 Pa s at 320 K, whereas that of 
ethylene glycol decreases from 0.0247 Pa s at 290 K 

to 0.00757 Pa s at 320 K [2]. Thus, viscosity is very 
temperature-dependent even for water. This viscosity 
variation with temperature alters velocity profiles, 

particularly where there is an uneven thermal bound- 
ary condition such as a heated top wall in a rec- 
tangular duct. Consequently, the heat transfer and 
friction coefficients will be different from the values 
obtained with a fluid whose viscosity is independent 

from temperature variations. 

2. BACKGROUND AND OBJECTIVE 

Many studies have reported variable-property 
analyses in the literature [I-l 71. The general effect of 

7 Deceased (17 February 1992). 
$ University of Florida, Department of Aerospace Engin- 

eering, Mechanics and Engineering Science, Gainesville, FL 
32611, U.S.A. 

the variation of the transport properties with tem- 
perature on flow and heat transfer was to increase 

the velocity and temperature gradients. This effect 
depends on the type of duct geometry and thermal 
boundary condition (i.e. whether it is symmetric or 
asymmetric). 

For a circular duct, where one expects a symmetric 

heating at the wall, Sieder and Tate [5] experimentally 
investigated the effect of variable viscosity on heat 
transfer in both heating and cooling situations. 
Traditionally, the temperature effect on flow and heat 
transfer were shown in the following equations : 

and 

Wk, = hhvY (1) 

.&I = (I?b/%v~n,. (2) 

Sieder and Tate [5] reported that the n value in equa- 
tion (I) was 0.14, and the m value in equation (2) was 
0.25 for laminar flow. Deissler [6] solved the same 
problem analytically and reported n = 0.14 and 
m = 0.54. Yang [7] studied the variable viscosity effect 
on heat transfer in developing and fully developed 

regions with both constant wall temperature and heat 
flux boundary conditions in a circular tube; he 
reported that the n value was 0.11. Shannon and 

Depew [8] numerically studied fully developed heat 
transfer with a constant heat flux boundary condition 
in a circular tube, but their predictions differed from 
Yang’s, particularly in the entrance region. Shannon 
and Depew reported that at the entrance of the tube, 
n was approximately 0.3 and decreased to 0.14 in the 
fully developed region. Oskay and Kakac [9] studied 
the heat transfer of a mineral oil flowing through a 
circular tube with constant heat flux at the wall and 
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NOMENCLATURE 

c :‘P specific heat of fluid axial distance 

n,, hydraulic diameter Z non-dimensional axial distance, 

f‘ fanning friction factor. E,!(d, RrJPr). 
( -df”id~)i[dh:(2PI’~~,)] 

.t7 g1?Wity Greek symbols 
CZ Graetz number. (RP Pr 6,);f r aspect ratio (i.e. ratio of width to 

l;,i forced convection heat transfer height = ~~c,/.u,j) 

cocflicient r conslant viscosity-variation paramctcr 

R, thermal conducti~/~ty of fluid introduced in equation (6) 
177 exponent introduced in equation (2) r?WI reference viscosity (at inlet temperature 

II exponent introduced in equation (I) of 20 C) 
NLI Nusselt number. calculated at the heated T non-dimensional viscosity, )?(f)/yT,,, 

top wall I-1 Newtonian viscosity 

PiI Peclet number, Re Pr /lh.i<\g average bulk viscosity of fluid. evaluated 

Pt Prandtl number, &,.,i;,jR, al l/2( r, + 7-J 
q” heat flux 4 non-dimensional temperature, 

RL’ Reynolds number, (p ~~,~~~~~~~~~~ ~~[(~~~,~~)~~~I. 

T non-dimensional temperature. 
(T- T,)l(q”B,/Rr) Subscripts 

: 
7, fluid inlet temperature b bulk 

7, wall temperature b,avg bulk average 

i;; axial velocity cP constant property 

I’, non-dimensional axial velocity, FZ/l:.tvg fc forced convection 

l’.,,,Q average axial velocity i inlet 

.f, c axes of Cartesian coordinate system 0 outlet 

.Y, t* nol~-dimensional axes of Cartesian w wall. 

coordinate. S/b,, p/D,, 
.Y*. J’* non-dimensional lateral and vertical Superscripts 

distance .\-itl P/i: . > (11, I_ ,I dimensional quantities. 

reported that the n value was 0.152. Test [IO] ana- 
lytically and experimentally studied laminar heat 

transfer for the constant wall temperature boundary 
condition. He concluded that because of the changes 
in velocity profile due to variable viscosity, the radial 

convection term should be retained in the energy equa- 
tion. Rosenberg and Hellums [I I] studied the develop- 
ing laminar flow with the Prandtl number ranging 
from 2 to 1000 and reported that results for the high 
Prandtl number agreed with those of Pr = 2 within 
20%. 

Oliver and Rao 1121 questioned the validity ofequa- 
tion (1) and proposed that the correction for the vari- 

able viscosity should include some dependence on the 
Graetz number to fit their datd better for a highly 
viscous oil (Valvata-85). These results were quali- 
tatively in agreement with the analytical results of 
Joshi and Bergles [13]. When the inlet effect was con- 
sidered by means of the Graetz number. the exponent 
of the viscosity ratio correction was found to be con- 
siderably larger than the fully developed value [14]. 

Turning to a non-circular duct geometry, Lyutikas 
and Zhukauskas 131 analytically investigated the 
influence of variable viscosity on the laminar heat 
transfer in a flat duct in a thermally developing flow 

region, and reported that the IZ value in equation (1) 
was 0.167. Preiningerova and Allen [15] conducted a 
similar study by varying heat flux and mass flow rate 
and reported that the higher Nusselt number was 
shown to have a larger heat flux at the same mass flow 

rate, and a small mass flow rate at a same heat flux. 
Butler and McKee 141 analytically expressed the 
velocity profile in a fully developed flow with tem- 
peraturc-dependent viscous fluids in top-wall-heated 
rectal~gular ducts with aspect ratios of 0.5, 5 and 10. 
but did not report the m value or any heat transfer 

results. Hwang and Hong [ 161 obtained an analytical 
solution and experimental results using a rectangular 
duct for the constant wall tem~ratLire condition with 
ethylene glycol; they reported that the Nusselt 
numbers increased by 15~20% from the values of 
constant property fluid. Kakac [I71 summarized the 
values of IT and f?z of tive important studies. 

Recently, Xie and Hartnett [l] experimentally 
studied the laminar heat transfer performance of a 
mineral oil in a 2: 1 rectangular duct with a top-wall- 
heated thermal boundary condition (i.e. H,). They 
reported that the local Nusselt numbers from the 
heated top wall increased by approximately 30-400/o 
over the values for water. a phenomenon that was 
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attributed to a secondary flow resulting from an asym- 
metric velocity profile associated with the variable 

viscosity of the mineral oil [I]. 
The objective of the present study is to investigate 

numerically the effect of variable viscosity on the local 
laminar heat transfer performance of temperature- 
dependent fluids in a 2: 1 rectangular duct in order to 
examine flow and temperature distributions in the 

rectangular duct more closely. In order to delineate 
the effect of the secondary flow at the corner of the 

rectangular duct, an axially parallel flow is assumed 
such that the axial velocity, ~1, (s, y. z), is the only non- 
zero velocity component. Thus, the present calcu- 
lation represents the case of a thermally developing 

but axially parallel flow with a heated top wall in the 
2:1 rectangular duct. Note that the top-wall-heated 
rectangular duct is one of the basic designs for a liquid 

cooling module for the computer industry. 

3. PROBLEM DESCRIPTION AND 

ASSUMPTIONS 

A schematic diagram of the system under con- 

sideration is shown in Fig. 1. Fluid enters the duct 
with a fully developed parabolic velocity profile and 
a uniform temperature T,. The H, thermal boundary 
condition corresponding to axially constant heat flux 
and peripherally constant temperature is adopted, i.e. 
top-wall-heated, with other walls adiabatic. In order 
to simplify the computational model, the following 
treatments are incorporated : 

(1) Constant fluid properties, except for the 
viscosity. which is exponentially dependent on the 
temperature. 

(2) No axial conduction of thermal energy, which 
requires a large Peclet number (i.e. the product of the 
Reynolds number, Re, and the Prandtl number, Pr). 

(3) Negligible viscous dissipation of thermal energy, 
which requires that the Brinkman number, Br, a mea- 

sure of the magnitude of the viscous dissipation, be 
very small. 

walls adiabatic 

V(x,y), Parabolic profile 

FIG. 1. Hydrodynamic and thermal boundary conditions. A 
parabolic velocity profile was used at the inlet of the rec- 

tangular duct. 

(4) No axial velocity gradient, au,/&, in the axial 

momentum equation. 

4. FORMULATION AND NUMERICAL 

TECHNIQUES 

The non-dimensional forms of the conservation 

equations of mass. momentum, and energy for an 
axially parallel and thermally developing flow in a 

rectangular duct are given as follows : 

Continuity 

SI c, dx dy = 1 .O 

Axial momentum 

;&(n9+$-)$)+2J*Re=o (4) 

Energy 

which are based on the reference temperature, i.e. 
inlet temperature 20 ‘C. In order to assess the role of 
viscosity variation on the development of the flow 
field, the temperature-dependent viscosity is em- 
ployed. Viscosity should have a dramatic effect on 
the flow field of temperature-dependent fluids, and 

the magnitude of the effect depends on types of fluids, 
duct geometry, mass flow rate [I 51. and relative mag- 
nitude of heat flux. 

The temperature dependence of viscosity is 

described by an exponential model, which, in dimen- 
sionless form, is 

g = C, ]O’iT) (6) 

where T is a dimensionless temperature introduced 
for H, boundary condition, defined as 

,F_$\ 
(7) 

and c represents the slope of the viscosity curve, i.e. YI 
vs T, which becomes negative in the case of heating. 
The values of [ for various fluids are listed in Table 

I, which also shows the ratios of density, specific heat, 
thermal conductivity, and viscosity at two different 
temperatures, i.e. at 20 and 5O‘C, and the Prandtl 
number. The viscosity ratio for glycerin is much larger 
than that for mineral oil. However, the value of [ for 
glycerin is nearly the same as that for mineral oil. This 

is due to the difference in thermal conductivities of 
the two fluids used in the dimensionless temperature ; 
k = 0. I5 W mm ’ Km- ’ for mineral oil and k = 0.286 
W mm ’ K- ’ for glycerin. Hence, the present numerical 
study with [ = I1 .I represents the case for both 
mineral oil and glycerin. The Prandtl number covered 
in the present study ranges from 7 to 15 000. The 
product of the Fanning friction factor, .f; and the 
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Table I The ratio of some physical properties of various fluids at temperature 01‘20 (‘ and 50 C’ 

Fluid (P2,,!Oi<l) (C,Z,,,:C,V,) (K,,,,:‘K,V,) (‘12,,#‘~1 w) c I??(, 

Water I.011 I.000 0.940 I.816 .-- 1.17 6 .9 
Ethylene glycol I.021 0.945 0.961 3.263 ~ 6.09 209.2 
Mineral oil (IO-NF)t I.022 0.933 I.027 3.592 ~ I I.1 51 I.5 
Engine oil I.021 0.937 I.014 7.085 - 13.0 IO x53.0 
Glycerin 1.015 0.923 0.997 X.809 ~ I I.1 12616.0 

For which ; is a viscosity-variation parameter, which is constant for a given tluid. 
t From J. J. Powell, Inc. (Amoco Oil Products), P.O. Box 30, Philipsburgh. PA 16866. U.S.A. 

Reynolds number, Re, represents a momentum source 
term in the non-linear axial momentum equation 
[I& 191. 

Both the velocity and a generalized form of the 
thermal boundary conditions in non-dimensional 
form are given below. The no-slip boundary condition 
is applied along the periphery of the duct for the axial 

velocity component. 

Axial momentum : 

V,(O, J’) = 0 

l-+1 
r’; i ! 27’)‘ = 

0 

Energy : 

(8) 

(9) 

(10) 

(11) 

1 = c, (12) 

where 

ds = [(d.l-)‘+(d.r)‘J”’ 

c, = I, 

C’J = 

I : constant temperature boundary condition 

0 : non-constant temperature boundary condition 

(13) 

C, = J, &,\cn + Jzq” (14) 

I, = 

( 

I : constant temperature boundary condition 

0 : non-constant temperature boundary condition 

(15) 

J2 = 
I : constant heat flux boundary condition 

0 : constant temperature boundary condition. 

(16) 

Solutions to the problem defined by the equations 

above were obtained numerically by finite volume 

procedures [20,21]. A second-order accurate differ- 
ence scheme was employed for the diffusion terms, 
while the second-order upwinding scheme [22] was 
employed for the convective term in the energy 
equation for all interior nodal points. For the ncar- 
boundary control volumes, no special discretization 

equation was required, since the boundary condition 
data could be directly employed at the boundary face. 
This convenient property arose because the grid 
points were placed at the centers of the control 
volume. In the calculation of the rate of deformation 
tensor, a second-order central difference scheme was 
employed for the interior nodes. while a first-order 
difference between the near-boundary and boundary 
nodal points was employed for the near-boundary 
control volumes. 

A fully implicit solution technique was adopted for 

both the momentum and energy equations at any 
given axial location. At a given axial location, the 

successive line underrelaxation (SLUR) procedure 
[23] was employed for the solution ofthe implicit finite 
diffcrcnce form of the governing equations. Since the 
energy equation is parabolic in the axial direction, a 
marching solution was employed. For the momentum 
equation, a predictor/corrector method was devel- 
oped by employing SLUR for the inner iteration solver 

for a given f’* Re product in combination with the 
Van WijngaardenDekker Brent scarohing mcthod- 
ology for the outer iteration [ 181. 

Equations (4) and (5) wcrc solved by an itcrating 
procedure in which the temperature distribution 
obtained for constant property assumption was used 
as the first approximation. Then, using the appro- 
priate viscosity variation with temperature. as given 
in equation (6). the momentum equation was solved 
to yield the second approximation for the velocity 
distribution. This improved velocity distribution was 
employed in the calculation of the energy equation to 
yield the second approximation for the temperature 
distribution. The procedure was repeated until the 
velocity and tcmperaturc distributions changed ICSS 

than 0.1 %, as compared to the values in the previous 

step. 
Convergence for the SLUR procedure was moni- 

tored by examining how well the discretization cqua- 
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tion was satisfied by the current vatues of the depen- 
dent variables. For each grid point, the residual R was 
calculated as 

R = ~~~~~~~+b-~~~~ Cf3 

where Onb are the neighboring dependent variables, 
u,~ are the coefficients corresponding to these neigh- 

boring dependent variables, h represents the other 
terms in the governing finite difference equations, 0, 
is the current nodal point dependent variable, and aP is 

the coefficient corresponding to 0,. The convergence 
criteria for the SLUR method required that for any 
given grid point, the absolute value of the residual 1 Rf 

be less than 1 O- 4. 

5. RESULTS AND DISCUSSION 

The current numerical study used the properties 

of density, thermal conductivity, specific heat, and 
viscosity of three different fluids as reported in the 
literature [1.9]. For mineral oil, the values reported 
by Xie and Hartnett were used so that our results 
could be compared with their experimental heat trans- 
fer results [l]. To double check the temperature- 
dependent viscosity of the mineral oil (IO-NF, 

Amoco), the viscosity of the oil was measured over a 
range of temperature using a Brookfield viscometer. 
The experimental uncertainty of viscosity measure- 
ment was less than 3% and the precision Iimit of 

temperature measurement was ~O.OY‘C. The effect of 
these uncertainties on the numerical simulation was 
less than 4%. Our viscosity results, represented by 
solid circles in Fig, 2, gave good agreement with the 
data reported by Xie and Hartnett [I]? represented as 
solid squares in Fig. 2. 

Prior to presenting any numerical solutions of inter- 
est, the appropriate grid size was assessed. On a uni- 

form grid, a number of simulations were carried out 
by varying grid sizes in order to solve the continuity 
and momentum equations for a constant property 

fluid--a case where well-established values off * Re 

are available. The exact analytical value of ,f e Rr is 
15.54806, Shah and London’s value is 15.55733, and 

the current value with 62 x 62 grid was 15.52953. The 
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FIG. 2. Viscosities of three different fluids with temperature. 

values of f‘* Re became independent of grid sizes 

beyond 42 x42. Hence, a 42 x42 grid size was 
employed for all the calculations presented in the pre- 
sent study. Appropriate axial space-marching steps 
along the axial direction were chosen from I 0e4 to 
IO- ’ for the energy equation. 

Figure 3(a) shows the effect of the variable viscosity 

of mineral oil on temperature profiles in the thermally 
developing region, where two temperature profites cal- 
culated for the mineral oil are compared with those 

for water at two axial locations. Near the inlet (i.e. 
I = 0.005), there is almost no difference between the 
two temperature profiles of oil and water; however, 

at z = 0.05, which is in the middle of the thermally 
developing region, the temperature near the heated 
top wall for the oil is less than that for water. This 
phenomenon can be attributed to an eflicient heat 

removal due to an increased velocity gradient near the 
heated top wall for the mineral oil. 

Figure 3(b) shows the calculated dimensionless 
viscosity of the mineral oil in a th~rl~a~ly developing 
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FIG. 3. (a) dimensionless temperature profiles on mid-plane 
(i.e. x* = 0.5) along the vertical fy) direction in a 21 rec- 
tangular duct with top-wall-heated, (b) dimensionless vis- 
cosity profiles on mid-plane (i.e. x* = 0.5) along the vertical 
{y) direction in a 2: 1 rectangular duct with top-wall-heated, 
(c) dimensionless axial velocities on mid-plane (i.e. x* = 0.5) 
along the vertical (y> direction in a 2: 1 rectangular duct with 

top-wall-heated. 



Row. At the inlet (i.e. : = 0). the oil viscosity is 

uniform. having a value of 0.952 at the inlet tem- 
perature of 20 C. The viscosity of mineral oil ncal 
rhc heated top wall decreases dramatically with axial 
distance (i.e. 17 = 0.952 at z = 0 to I/ = 0. I at z = O.(S), 

while the viscosity at the bottom wall almost remains 
unchanged. 

In order to delineate the effect of variable viscosity 
on the velocity profiles in the thermally developing 
flow field. Fig. 3(c) shows velocity profiles on the mid- 
plane (i.e. .Y* = 0.5) at four different axial locations 

(i.c. -_ = 0.005, 0.02, 0.04 and 0.05), where J’* = 1.0 

refers to the heated top wall. and J’* = 0 refers to the 
unheated bottom wall. Obviously, the reduction of 
the viscosity causes a much steeper velocity gradient 
with increasing axial distance for the mineral oil than 

for water. The fully developed parabolic velocity pro- 

lile (i.c. a solid curve) for water is shown as a reference 
in Fig. 3(c). The location of the maximum velocity is 
found to shift from the center of the rectangular duct 
at the inlet (i.e. v* = O.S} toward the heated top wdll 

with increasing axial distance. 
The axial distributions of bulk and top wall tem- 

pcraturcs for the mineral oil and ~atcr arc depicted 
in Fig. 4(a). The top wall temperature represents a 

space-averaged mean wall tcmperaturc. Due to the 
increase of velocity gradients near the hcatcd top wail. 
the wall tcmp~rat~ires for the mmcral oil are much 
lower than those for water, and the bulk temperatures 

I‘or the mineral oil arc slightly higher than those fog 

water’. 
Figure 4(b) shows the axial distribution of the wall 

g “.“b - Top Wall (9 

$ 0.0 
z 0.00 0.01 0.02 0.03 0.04 0.05 

Dimensionless Axial Distance. z 

0.0’ “‘.” ‘...” “‘.’ --#I 
.OOOl .ooi .Oi .1 1 

Dimensionless Axial Distance, z 

Dimensionless Axial Distance, z 

FIG. 5. Viscosity ratio vs dimensionless axial distance. :, fol 
four dii‘i‘crcnt fluids. 

and bulk temperature ditl’erencc, AT,,I,,.,,,,,, , Ibt 
mineral oil, cthylcne glycol (EC), water. and a con- 

stant property fluid. Note that a thermally fully 
developed flow is obtained when A7’hzr,l~tiii,L reaches a 
plateau value. The results, given in Fig. 4(b), clearly 
indicate that the thermal entrance lengths. L,,, ,, Ibr 
the above four fluids in the top-wall-heated rcc- 
tangular duct are in the range of 0.03 - 0.7. and the 
variable viscosity of-the temperature-dependent fluids 
yields shorter thermal entrance lengths than for con- 
&ant property fluid. For example. the mineral oil. 

the most temperature-dcpcndcnt ftuid included in the 
study. shows the shortest dimensionless thermal 

entrance length. 
Figure 5 presents the viscosity ratio ai the top wall 

and bulk fluid tcmpcr~ltures, tl%vi-:q,,, along the axial 
distance. Approaching the end of a thermal entrance 
length, the viscosity ratio rcachcs an asymptotic value 
for each tluici. The smallest asymplotic value of the 

viscosity ratio is shown for the mineral oil. 
In order to see the correlation between ,f’* Rc and 

the dimensionless axial distance, r, the protilc of,/‘* Rc 

IS presented along the axial distance in Fig. h(a). At 

(a) 

Dimensionless Axial Distance. z 

FIG;. 4. (a) Dimensionless bulk and mean-wall temperature 
profiles along the dimensionless axial distance. -. and (h) 
differential temperatures between wall and bulk. AT,,,,.,,,,, 
aiong the dimensi~niess distance. Thermal entrance lengths 
for CP, water, EG, and oil can be seen as the locations where 

A~W.,ll.holh reaches respective plateau values. CP = constant 
property. EC = ethylene glycol. 

.I’ “““’ “’ 
-I,. . I 

1 10 100 
11 b w/q w 

FIG. 6. (a) Product of the Fanning friction factor and the 
Reynolds number along the dimensionless axial distance. z, 
and (b) relative Fanning friction factor vs viscosity ratio. 

S-T = Seder and Tate IS]. 
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the inlet, ,f * Re has a value of 15.53 and exponentially 

decreases with the axial distance. The higher the abso- 
lute value of [ is, the more significantly the friction 

factor decreases. 
Figure 6(b) shows the ratio of the friction factor 

for variable viscosity fluids to that for a constant 

property fluid, .flj&. as a function of the viscosity 

ratio, )I~,&~. This parameter, v,,~&, , was used by 
Sieder and Tate [5]. The subscript ‘cp’ indicates a 

value for a constant property fluid. In the thermally 
developing region, the friction factor ratios in the 

thermally developing region correlate well with the 

following equation : 

The new correlation equation yields friction factor 
results that are between Sieder and Tate’s correlation 

(m = 0.25) and Deissler’s (m = 0.54). The dis- 
crepancy between the present results and Sieder and 

Tate’s can be attributed to different thermal boundary 
conditions ; i.e. Sieder and Tate’s had a constant wall 
temperature condition, T, whereas the present study 
used a uniform asymmetrical wall heat flux condition, 

H l(1 L). In the thermally fully developed region, each 
curve in Fig. 6(b) deviates from the present prediction. 

Equation (18) is limited to the thermally developing 
region. 

Figure 7 shows that the exponents, m, for friction 
factors in equation (2) are slightly increasing along 
the dimensionless axial distance even in the thermally 
developing region. The present results of m are com- 

pared with the results of Shannon and Depew [8] 
indicated by (S-D) and Yang [7]. Theexponent values, 
nz, reported by Shannon and Depew ranged from 0.510 
to 0.635. The present values are generally found to be 
smaller than Yang’s and Shannon and Depew’s results 

but larger than Sieder and Tate’s value. The m values 
of Shannon and Depew which were obtained using 
a thermal boundary condition similar to that of the 
present study (i.e. H,) shows a trend similar to the 
present results. The difference between the previously 
reported values [7,8] and the present result can prob- 
ably be attributed to the different form of viscosity- 

temperature functions employed and to different 
Prandtl numbers of three test fluids, as given in Table 1, 
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FIG. 7. The exponent m for friction factor along the dimen- 
sionless axial distance, z. in thermally-developing region, 
S-T = Sieder and Tate [5], S-D = Shannon and Depew [8]. 
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FIG. 8. The comparison of the present numerical laminar 
heat transfer results ofwater and oil with experimental results 
in a 2:l rectangular duct with top-wall-heated. Heat transfer 

results of EG. and CP are given for comparison. 

in order to examine the effect of variable viscosity 
on laminar heat transfer for water, the local Nusselt 

numbers are compared in Fig. 8(a), which shows 10% 
heat transfer enhancement for water compared with 
the results of constant property fluid, and also gives 
excellent agreement with experimental results for 
water reported by Xie and Hartnett [l]. In addition, 

the present calculation yields a Nusselt number of 
3.54, which is identical to the forced convection limit 

[Hl (lL)] in the thermally fully developed region in a 
2: 1 rectangular duct. 

In order to quantify the overall effect of variable 
viscosity of the fluids on the laminar heat transfer 
performance in a top-wall-heated rectangular duct, 

Fig. 8(b) presents the local Nusselt numbers against 
the Graetz number. Present results calculated with 
variable viscosity oil give excellent agreement with 
corresponding experimental results for oil reported by 
Xie and Hartnett [I]. The Nusselt number for oil 
(< = 11.1) is almost identical to the previous 
analytical results obtained for glycerin ([ = 1 I. I) [3] 
which can be attributed to the same [ value. The 
Nusselt number is found to increase by 40-50% for 

oil (or glycerin) and by 70-80% when compared with 
those of constant property fluid. The laminar heat 
transfer enhancement can be attributed to the 
decrease of the viscosity near the heated top wall, 
which brings out the significant increase in velocity 
gradients and subsequent decrease in fluid tem- 
peratures near the top wall, rendering the overall 
increase in the local heat convection performance. 

From the results given in Figs. 8(a) and (b), we 
conclude that the constant viscosity-variation par- 
ameter, [. is directly related to heat transfer enhance- 
ments ; i.e. the higher < a fluid has, the larger the heat 
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FIG. 9. The exponent n for heat transfer along the dimen- 
sionless axial distance. r. 

transfer enhancement that will be produced. In 
general, the effect of temperature-dependent fluids on 
the laminar heat transfer is more significant in a non- 
circular duct than in a circular duct because in the 

latter a symmetric thermal boundary condition must 

bc used and the effect of variable viscosity on heat 
transfer cannot be capitalized. 

Figure 9 compares the exponent n for heat transfer 

correlation, equation (I). with the widely-accepted 
values of Sieder and Tate (S-T). Yang. and Shannon 
and Depew. As Bergles [I41 pointed out. there was a 
rather generous distribution of the data about the 
chosen correlation of Siedcr and Tate. Yang [7] 
reported that the n value was 0. I I for both the thcr- 
mally developing and the thermally fully developed 
region. The present results shown in Fig. 9 indicate 
that the value of exponent II for heat transfer 

asymptotically approaches 0.12 in the thermally fully 
developed region. In the entry region the present n 
value is considerably larger than Sieder and Tate’s 

value. Shannon and Depew. using their experimental 
heat transfer results obtained in the thermally develop- 
ing region. reported a trend similar to the present 
results, although the magnitudes of n values were con- 
sistently smaller than the present values. The differ- 
cnce between the results of Shannon and Dcpew and 
the present results may bc attributed to different 
thermal boundary conditions. The former used a sym- 
metric thermal boundary condition, I-I ,, whereas the 
present study used an asymmetrical thermal boundary 
condition, HI(IL). 

As demonstrated in Fig. 9, the correlation of Sieder 
and Tatc. as well as all the previously reported cor- 
relations (i.e. the ones shown in ref. [l7]), fails to 
predict the laminar heat transfer in the thermally 

developing region. Therefore. a new correlation is pro- 
posed which covers both thermally developing and 
thermally fully developed regions : 

(19) 

where n, is 0.12, an asymptotic value of n in the 
thermally fully developed region as the Graetz number 
approaches zero. This correlation includes the effect 
of the Graetz number on the heat transfer enhance- 
ment and predicts then values within 5% for the three 
flllids whose Prandtl numbers range from 7 to 15000. 

In the thermally developing region, the second tcrtn 
on the right hand side ofequation (I 9) plays an impor- 
tant role, whereas in the thermally-flllly-dc\clopcd 
region. the second term on the right hand side bccomos 
negligibly small ; thus equation (19) reduces to a com- 

monly used correlation form. 

6. CONCLUSION 

The present numerical calculations with three 
different fluids of variable viscosity were conducted 

under the assumption of an axially parallel flow in a 
top-wall-heated 2:i rectangular duct, in which the 

effect of any secondary flow on heat transfer wax 
cxcludcd. The present numerical results of local 
Nusselt numbers for oil which give cxccllent agrec- 

ment with recent experimental results [l], showed 70 
80% enhancement over those of a constant property 

fluid and 40~50% enhancement over water. The heat 
transfer enhancement observed in the present study 
was achieved not because of the secondary Ilow at 
the corner but because of the steep velocity gradient 
associated with the decrease in the viscosity of fluids 

near the heated top wall. The study proposes a new 
correlation for the laminar heat transfer at the heated 
top wall in a 2: I rectangular duct, which covers both 
thermally-dcvcloping and thermally fully developed 
regions. A temperature-dcpendcnt viscous fluid such 

as mineral oil or ethylene glycol can be used for the 
purpose of heat transfer enhancement in clcctronic 
cooling and compact heat cxchangcrs, whcrc uncvcn 
thermal boundary conditions with non-circular ducts 
are commonly ulilized. 

A~~,lo~~,k,c!yc,,??c,,1/ -The authors wish to thank Messrs James 
M. Radka, Wayne Harmening and Don Schnorr of General 
Electric for their support of the present work. 
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